Составитель: Гурова Елена Николаевна, учитель математики 1 категории
Структура программы
| № п/п | Наименование раздела | Номер страницы |
| 1. | Титульный лист | 1 |
| 2. | Оглавление | 2 |
| 3. | Пояснительная записка | 3 |
| 4. | Планируемые результаты изучения учебного предмета | 4 |
| 5. | Содержание учебного предмета | 8 |
| 6. | Тематическое планирование | 11 |
Пояснительная записка
Рабочая программа по алгебре для обучающихся 7 — 9 классов составлена на основе федерального государственного образовательного стандарта основного общего образования по авторской программе «Алгебра 7 – 9 классы». Авторы – составители: А.Г.Мордкович, И.И. Зубарева. М. Мнемозина 2015 г., по УМК А.Г. Мордкович с учетом примерной программы курса алгебры для 7-9 классов средней общеобразовательной школы, рекомендованной Департаментом образовательных программ и стандартов общего образования Министерства образования Российской Федерации.
Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся. В основу настоящей программы положены педагогические и дидактические принципы (личностно ориентированные; культурно — ориентированные; деятельностно — ориентированные и т.д.) вариативного развивающего образования, и современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС.
Личностно ориентированные принципы: принцип адаптивности; принцип развития; принцип комфортности процесса обучения. Культурно — ориентированные принципы: принцип целостной картины мира; принцип целостности содержания образования; принцип систематичности; принцип смыслового отношения к миру; принцип ориентировочной функции знаний; принцип опоры на культуру как мировоззрение и как культурный стереотип. Деятельностно — ориентированные принципы: принцип обучения деятельности; принцип управляемого перехода от деятельности в учебной ситуации к деятельности в жизненной ситуации; принцип перехода от совместной учебно- познавательной деятельности к самостоятельной деятельности учащегося (зона ближайшего развития); принцип опоры на процессы спонтанного развития; принцип формирования потребности в творчестве и умений творчества.
Программа задает перечень вопросов, которые подлежат обязательному изучению в основной школе. Она так же является логическим продолжением курса математики начальной школы (принцип преемственности). В основе курса лежит авторская идея А.Г.Мордковича; программа позволяет обеспечивать формирование как предметных умений, так и универсальных учебных действий школьников; программа позволяет обеспечивать достижение целей в направлении личностного развития, в метапредметном направлении и предметном направлении
Планируемые результаты освоения учебного предмета
Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих результатов:
1) в направлении личностного развития:
- формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
- развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
- формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
- воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
- формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
- развитие интереса к математическому творчеству и математических способностей;
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
- креативность мышления, инициатива, находчивость, активность при решении математических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
2) в метапредметном направлении:
- развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
- формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
- первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
3) в предметном направлении:
- овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
- создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности;
- овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
- умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;
- развитие представлений о числе, натуральных чисел, овладение навыками устных, письменных, инструментальных вычислений;
- овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;
- усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
- умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
- умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера;
- умение проводить классификации, логические обоснования, доказательства математических утверждений;
- умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;
- овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;
- овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;
- овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений.
7-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
- натуральных, целых, рациональных, иррациональных, действительных числах;
- степени с натуральными показателями и их свойствах;
- одночленах и правилах действий с ними;
- многочленах и правилах действий с ними;
- формулах сокращённого умножения;
- тождествах;
- методах доказательства тождеств;
- линейных уравнениях с одной неизвестной и методах их решения;
- системах двух линейных уравнений с двумя неизвестными и методах их решения.
- выполнять действия с одночленами и многочленами;
- узнавать в выражениях формулы сокращённого умножения и применять их;
- раскладывать многочлены на множители;
- выполнять тождественные преобразования целых алгебраических выражений;
- доказывать простейшие тождества;
- находить число сочетаний и число размещений;
- решать линейные уравнения с одной неизвестной;
- решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;
- решать текстовые задачи с помощью линейных уравнений и систем;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
8-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
- алгебраической дроби, основном свойстве дроби;
- правилах действий с алгебраическими дробями;
- степенях с целыми показателями и их свойствах;
- стандартном виде числа;
- функциях y=kx+b, y = x , y =k/ x , их свойствах и графиках;
- понятии квадратного корня и арифметического квадратного корня;
- свойствах арифметических квадратных корней;
- функции y = x , её свойствах и графике;
- формуле для корней квадратного уравнения;
- теореме Виета для приведённого и общего квадратного уравнения;
- основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;
- методе решения дробных рациональных уравнений;
- основных методах решения систем рациональных уравнений;
- сокращать алгебраические дроби;
- выполнять арифметические действия с алгебраическими дробями;
- использовать свойства степеней с целыми показателями при решении задач;
- записывать числа в стандартном виде;
- выполнять тождественные преобразования рациональных выражений;
- строить графики функций y=kx+b, 2 y = x , x k y = и использовать их свойства при решении задач;
- вычислять арифметические квадратные корни;
- применять свойства арифметических квадратных корней при решении задач;
- строить график функции y = x и использовать его свойства при решении задач;
- решать квадратные уравнения;
- применять теорему Виета при решении задач;
- решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;
- решать дробные уравнения;
- решать системы рациональных уравнений;
- решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
9-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
- свойствах числовых неравенств;
- методах решения линейных неравенств;
- свойствах квадратичной функции;
- методах решения квадратных неравенств;
- методе интервалов для решения рациональных неравенств;
- методах решения систем неравенств;
- свойствах и графике функции n y = x при натуральном n;
- определении и свойствах корней степени n;
- степенях с рациональными показателями и их свойствах;
- определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;
- определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;
- формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;
- использовать свойства числовых неравенств для преобразования неравенств;
- доказывать простейшие неравенства;
- решать линейные неравенства;
- строить график квадратичной функции и использовать его при решении задач;
- решать квадратные неравенства;
- решать рациональные неравенства методом интервалов;
- решать системы неравенств;
- строить график функции n y = x при натуральном n и использовать его при решении задач;
- находить корни степени n;
- использовать свойства корней степени n при тождественных преобразованиях;
- находить значения степеней с рациональными показателями;
- решать основные задачи на арифметическую и геометрическую прогрессии;
- находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используется алгебра.
Содержание учебного предмета
7 класс (102 часа)
Математический язык. Математическая модель (13 ч)
Числовые и алгебраические выражения. Переменная. Допустимое значение переменной. Недопустимое значение переменной. Первые представления о математическом языке и о математической модели. Линейные уравнения с одной переменной. Линейные уравнения как математические модели реальных ситуаций. Координатная прямая, виды промежутков на ней.
Линейная функция (11ч)
Координатная плоскость. Алгоритм отыскания координат точки. Алгоритм построения точки М (а; b) в прямоугольной системе координат. Линейное уравнение с двумя переменными. Решение уравнения ах + by + с = 0. График уравнения. Алгоритм построения графика уравнения ах +by + с = 0. Линейная функция. Независимая переменная (аргумент). Зависимая переменная. График линейной функции. Наибольшее и наименьшее значения линейной функции на заданном промежутке. Возрастание и убывание линейной функции. Линейная функция у = kх и ее график. Взаимное расположение графиков линейных функций.
Системы двух линейных уравнений с двумя переменными (13ч)
Система уравнений. Решение системы уравнений. Графический метод решения системы уравнений. Метод подстановки. Метод алгебраического сложения. Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций (текстовые задачи).
Степень с натуральным показателем (6 ч)
Степень. Основание степени. Показатель степени. Свойства степени с натуральным показателем. Умножение и деление степеней с одинаковыми показателями. Степень с нулевым показателем.
Одночлены. Операции над одночленами (8 ч)
Одночлен. Коэффициент одночлена. Стандартный вид одночлена. Подобные одночлены. Сложение одночленов. Умножение одночленов. Возведение одночлена в натуральную степень. Деление одночлена на одночлен.
Многочлены. Арифметические операции над многочленами (15ч)
Многочлен. Члены многочлена. Двучлен. Трехчлен. Приведение подобных членов многочлена. Стандартный вид многочлена. Сложение и вычитание многочленов. Умножение многочлена на одночлен. Умножение многочлена на многочлен. Квадрат суммы и квадрат разности. Разность квадратов. Разность кубов и сумма кубов. Деление многочлена на одночлен.
Разложение многочленов на множители (18 ч)
Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью формул сокращенного умножения, комбинации различных приемов. Метод выделения полного квадрата. Понятие алгебраической дроби. Сокращение алгебраической дроби. Тождество. Тождественно равные выражения. Тождественные преобразования.
Функция у = х 2 (9 ч)
Функция у = х2 , ее свойства и график. Функция у = -x2 , ее свойства и график. Графическое решение уравнений. Кусочная функция. Чтение графика функции. Область определения функции. Первое представление о непрерывных функциях. Точка разрыва. Разъяснение смысла записи у = f(x). Функциональная символика.
Обобщающее повторение (9 ч)
8 класс (102 часа)
Алгебраические дроби (21 ч)
Понятие алгебраической дроби. Основное свойство алгебраической дроби. Сокращение алгебраических дробей. Сложение и вычитание алгебраических дробей. Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень. Рациональное выражение. Рациональное уравнение. Решение рациональных уравнений (первые представления). Степень с отрицательным целым показателем.
Функция у = √x. Свойства квадратного корня (18 ч)
Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел. Функция у =√х , ее свойства и график. Выпуклость функции. Область значений функции. Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня. Освобождение от иррациональности в знаменателе дроби. Модуль действительного числа. График функции у = │х│. Формула √x2 =│х│.
Квадратичная функция. Функция у = k/x (17 ч)
Функция у = ax2 , ее график, свойства. Функция у = k/x, ее свойства, график. Гипербола. Асимптота. Построение графиков функций у = f (x+l), y= f(x)+m, y =f (x+l)+m, у = — f(x), по известному графику функции у =f(x). Квадратный трехчлен. Квадратичная функция, ее свойства и график. Понятие ограниченной функции. Построение и чтение графиков кусочных функций, составленных из функций y =C, y = kx+m, y =k/x, y = ax2 +bx +c, y =√x, y = │x│ Графическое решение квадратных уравнений.
Квадратные уравнения (21 ч)
Квадратное уравнение. Приведенное (неприведенное) квадратное уравнение. Полное (неполное) квадратное уравнение. Корень квадратного уравнения. Решение квадратного уравнения методом разложения на множители, методом выделения полного квадрата. Дискриминант. Формулы корней квадратного уравнения. Параметр. Уравнение с параметром (начальные представления). Алгоритм решения рационального уравнения. Биквадратное уравнение. Метод введения новой переменной. Рациональные уравнения как математические модели реальных ситуаций. Частные случаи формулы корней квадратного уравнения. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Иррациональное уравнение. Метод возведения в квадрат.
Неравенства (15 ч)
Свойства числовых неравенств. Неравенство с переменной. Решение неравенств с переменной. Линейное неравенство. Равносильные неравенства. Равносильное преобразование неравенства. Квадратное неравенство. Алгоритм решения квадратного неравенства. Возрастающая функция. Убывающая функция. Исследование функций на монотонность (с использованием свойств числовых неравенств). Приближенные значения действительных чисел, погрешность приближения, приближение по недостатку и избытку. Стандартный вид числа.
Обобщающее повторение (10 ч)
9 класс (102 часа)
Рациональные неравенства и их системы (16 ч)
Линейные и квадратные неравенства (повторение). Рациональное неравенство. Метод интервалов. Множества и операции над ними. Система неравенств. Решение системы неравенств.
Системы уравнений (15 ч)
Рациональное уравнение с двумя переменными. Решение уравнения р(х; у) = 0. Равносильные уравнения с двумя переменными. Формула расстояния между двумя точками координатной плоскости. График уравнения (х — а)2 + (у -b)2 = r 2 . Система уравнений с двумя переменными. Решение системы уравнений. Неравенства и системы неравенств с двумя переменными. Методы решения систем уравнений (метод подстановки, алгебраического сложения, введения новых переменных). Равносильность систем уравнений. Системы уравнений как математические модели реальных ситуаций.
Числовые функции (25 ч)
Функция. Независимая переменная. Зависимая переменная. Область определения функции. Естественная область определения функции. Область значений функции. Способы задания функции (аналитический, графический, табличный, словесный). Свойства функций (монотонность, ограниченность, выпуклость, наибольшее и наименьшее значения, непрерывность). Исследование функций: у = С, у = kx+m, y =kx2 , y = √x, √y = k/x, y =│x│, y =ax2+bx +c. Четные и нечетные функции. Алгоритм исследования функции на четность. Графики четной и нечетной функций. Степенная функция с натуральным показателем, ее свойства и график. Степенная функция с отрицательным целым показателем, ее свойства и график. Функция у = 3 √х , ее свойства и график.
Прогрессии (16 ч)
Числовая последовательность. Способы задания числовых последовательностей (аналитический, словесный, рекуррентный). Свойства числовых последовательностей. Арифметическая прогрессия. Формула n-го члена. Формула суммы членов конечной арифметической прогрессии. Характеристическое свойство. Геометрическая прогрессия. Формула n-го члена. Формула суммы членов конечной геометрической прогрессии. Характеристическое свойство. Прогрессии и банковские расчеты.
Элементы комбинаторики, статистики и теории вероятностей (12 ч)
Комбинаторные задачи. Правило умножения. Факториал. Перестановки. Группировка информации. Общий ряд данных. Кратность варианты измерения. Табличное представление информации. Частота варианты. Графическое представление информации. Полигон распределения данных. Гистограмма. Числовые характеристики данных измерения (размах, мода, среднее значение). Вероятность. Событие (случайное, достоверное, невозможное). Классическая вероятностная схема. Противоположные события. Несовместные события. Вероятность суммы двух событий. Вероятность противоположного события. Статистическая устойчивость. Статистическая вероятность.
Обобщающее повторение (18 ч)
Тематическое планирование
7 класс
| №п/п | Название раздела | Количество часов | Количество контрольных работ |
| 1. | Математический язык. Математическая модель | 13 | 1 |
| 2. | Линейная функция | 11 | 1 |
| 3. | Системы двух линейных уравнений с двумя переменными | 13 | 1 |
| 4. | Степень с натуральным показателем и её свойства | 6 | |
| 5. | Одночлены. Арифметические операции над одночленами | 8 | 1 |
| 6. | Многочлены. Арифметические операции над многочленами | 15 | 1 |
| 7. | Разложение многочленов на множители | 18 | 1 |
| 8. | Функция y = x2 | 9 | 1 |
| 9. | Обобщающее повторение | 9 |
8 класс
| № п/п | Название раздела | Количество часов | Количество контрольных работ |
| 1. | Алгебраические дроби | 21 | 2 |
| 2. | Функция у = √x. Свойства квадратного корня | 18 | 1 |
| 3. | Квадратичная функция. Функция у = k/x | 17 | 2 |
| 4. | Квадратные уравнения | 21 | 2 |
| 5. | Неравенства | 15 | 1 |
| 6. | Обобщающее повторение | 10 | 1 |
9 класс
| №п/п | Название раздела | Количество часов | Количество контрольных работ |
| 1. | Неравенства и системы неравенств | 16 | 1 |
| 2. | Системы уравнений | 15 | 1 |
| 3. | Числовые функции | 25 | 2 |
| 4. | Прогрессии | 16 | 1 |
| 5. | Элементы комбинаторики, статистики и теории вероятностей | 12 | 1 |
| 6. | Обобщающее повторение | 18 | 1 |
