Составитель: Гурова Елена Николаевна, учитель математики 1 категории
Пояснительная записка
Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования.
Данная рабочая программа ориентирована на учащихся 10-11 классов и реализуется на основе следующих документов:
1. Программа для общеобразовательных школ, гимназий, лицеев:
Сборник “Программы для общеобразовательных школ, гимназий, лицеев: Математика. 5-11 кл.”/ Сост. Г.М.Кузнецова, Н.Г. Миндюк. – 3-е изд., стереотип.- М. Дрофа, 2002; 4-е изд. – 2014г.
2. Стандарт основного общего образования по математике.
Стандарт среднего (полного) общего образования по математике // Математика в школе.– 2014г,- № 4 ,- с.9
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.
Рабочая программа выполняет две основные функции:
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Цели
Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:
- формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
- воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства. Преобразование геометрических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.
Образовательные и воспитательные задачи обучения геометрии должны решаться комплексно с учетом возрастных особенностей обучающихся, специфики геометрии как учебного предмета, определяющего её роль и место в общей системе школьного обучения и воспитания. При планировании уроков следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся. Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приемов обучения, сбалансированное сочетание традиционных и новых методов обучения, оптимизированное применение объяснительно-иллюстрированных и эвристических методов, использование технических средств, ИКТ -компонента. Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы, как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов.
Основные цели курса:
- овладение системой математических знаний и умений, необходимых в практической деятельности, продолжения образования;
- приобретение опыта планирования и осуществления алгоритмической деятельности;
- освоение навыков и умений проведения доказательств, обоснования выбора решений;
- \приобретение умений ясного и точного изложения мыслей;
- развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии;
- научить пользоваться геометрическим языком для описания предметов.
Задачи обучения:
- закрепить сведения о векторах и действиях с ними, ввести понятие компланарных векторов в пространстве;
- сформировать умение учащихся применять векторно-координатный метод к решению задач на вычисление углов между прямыми и плоскостями и расстояний между двумя точками, от точки до плоскости;
- дать учащимся систематические сведения об основных телах и поверхностях вращения – цилиндре, конусе, сфере, шаре;
- ввести понятие объема тела и вывести формулы для вычисления объемов основных многогранников и круглых тел.
Контрольные работы направлены на проверку уровня базовой подготовки учащихся, а также на дифференцированную проверку владения формально-оперативным математическим аппаратом, способность к интеграции знаний по основным темам курса.
Промежуточный контроль знаний осуществляется с помощью проверочных самостоятельных работ, электронного тестирования, практических работ.
ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ
В результате изучения математики на базовом уровне ученик должен
знать/понимать
- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
Геометрия
уметь
- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
- использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
СОДЕРЖАНИЕ КУРСА:
1. Координаты точки и координаты векторов пространстве. Движения (15 ч).
Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.
Цель: введение понятие прямоугольной системы координат в пространстве; знакомство с координатно-векторным методом решения задач.
Цели: сформировать у учащихся умения применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве. В ходе изучения темы целесообразно использовать аналогию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осознанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геометрии
О с н о в н а я ц е л ь – обобщить и систематизировать представления учащихся о декартовых координатах и векторах, познакомить с полярными и сферическими координатами.
Изучение координат и векторов в пространстве, с одной стороны, во многом повторяет изучение соответствующих тем планиметрии, а с другой стороны, дает алгебраический метод решения стереометрических задач.
2.Цилиндр, конус, шар (16 ч)
Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.
Цель: выработка у учащихся систематических сведений об основных видах тел вращения.
Цели: дать учащимся систематические сведения об основных видах тел вращения. Изучение круглых тел (цилиндра, конуса, шара) завершает изучение системы основных пространственных геометрических тел. В ходе знакомства с теоретическим материалом темы значительно развиваются пространственные представления учащихся: круглые тела рассматривать на примере конкретных геометрических тел, изучать взаимное расположение круглых тел и плоскостей (касательные и секущие плоскости), ознакомить с понятиями описанных и вписанных призм и пирамид. Решать большое количество задач, что позволяет продолжить работу по формированию логических и графических умений.
О с н о в н а я ц е л ь – сформировать представления учащихся о круглых телах, изучить случаи их взаимного расположения, научить изображать вписанные и описанные фигуры.
В данной теме обобщаются сведения из планиметрии об окружности и круге, о взаимном расположении прямой и окружности, о вписанных и описанных окружностях. Здесь учащиеся знакомятся с основными фигурами вращения, выясняют их свойства, учатся их изображать и решать задачи на фигуры вращения. Формированию более глубоких представлений учащихся могут служить задачи на комбинации многогранников и фигур вращения.
3. Объем и площадь поверхности (17 ч).
Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.
Цель: систематизация изучения многогранников и тел вращения в ходе решения задач на вычисление их объемов.
Цели: продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов.
Понятие объема вводить по аналогии с понятием площади плоской фигуры и формулировать основные свойства объемов.
Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства,
так как вопрос об объемах принадлежит, по существу, к трудным разделам высшей математики. Поэтому нужные результаты устанавливать, руководствуясь больше наглядными соображениями. Учебный материал главы в основном должен усвоиться в процессе решения задач.
О с н о в н а я ц е л ь – сформировать представления учащихся о понятиях объема и площади поверхности, вывести формулы объемов и площадей поверхностей основных пространственных фигур, научить решать задачи на нахождение объемов и площадей поверхностей.
Изучение объемов обобщает и систематизирует материал планиметрии о площадях плоских фигур. При выводе формул объемов используется принцип Кавальери. Это позволяет чисто геометрическими методами, без использования интеграла или предельного перехода, найти объемы основных пространственных фигур, включая объем шара и его частей.
Практическая направленность этой темы определяется большим количеством разнообразных задач на вычисление объемов и площадей поверхностей.
Повторение (14+6 ч. (задачи ЕГЭ))
Цель: повторение и систематизация материала 11 класса.
Цели: повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: метод координат в пространстве; многогранники; тела вращения; объёмы многогранников и тел вращения
УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН
11 класс
2 часа в неделю
№ | Разделы, блоки | Количество часов | Контроль | |
Контр.раб. | Проверочные | |||
1 | Метод координат в пространстве | 15 | 1 | 2 |
2 | Цилиндр, конус, шар | 16 | 1 | 2 |
3 | Объемы тел | 22 | 1 | 2 |
4 | Обобщающее повторение. Решение задач | 11 | 1 | 2 |
5 | Решение задач ЕГЭ | 4 | 1 | |
ИТОГО | 68 | 5 | 8 |
Календарно-тематическое планирование уроков геометрии в 11 классе из расчёта 2 часа в неделю, всего 68 часов
№ урока | Тема раздела, урока | Дата | Примечания | |
По плану | Фактич. | |||
Глава 5. Метод координат в пространстве (15 ч.) | ||||
1 | Координаты точки и координаты вектора | |||
2 | Координаты точки и координаты вектора | |||
3 | Простейшие задачи в координатах | |||
4 | Решение задач | |||
5 | Решение задач | |||
6 | Скалярное произведение векторов | |||
7 | Свойства скалярного произведения векторов | |||
8 | Свойства скалярного произведения векторов | |||
9 | Решение задач | |||
10 | Движения | |||
11 | Движения | |||
12 | Решение задач | |||
13 | Решение задач | |||
14 | Обобщающий урок | |||
15 | Контрольная работа №1 «Метод координат в пространстве» | |||
Глава 6. Цилиндр, конус и шар (16 ч.) | ||||
16 | Цилиндр | |||
17 | Цилиндр | |||
18 | Решение задач | |||
19 | Конус. Усечённый конус | |||
20 | Конус. Усечённый конус | |||
21 | Решение задач | |||
22 | Решение задач | |||
23 | Сфера и шар | |||
24 | Сфера и шар | |||
25 | Площадь сферы | |||
26 | Решение задач | |||
27 | Решение задач | |||
28 | Решение задач | |||
29 | Решение задач. Самостоятельная работа | |||
30 | Обобщающий урок по теме «Цилиндр, конус, шар» | |||
31 | Контрольная работа №2 «Фигуры вращения» | |||
Глава 7. Объёмы тел (22 ч.) | ||||
32 | Понятие объёма. Объём прямоугольного параллелепипеда | |||
33 | Объём прямой призмы, в основании которой прямоугольный треугольник | |||
34 | Объём призмы и цилиндра | |||
35 | Решение задач | |||
36 | Решение задач на определение объёма призмы и цилиндра | |||
37 | Решение задач. Самостоятельная работа | |||
38 | Объём наклонной призмы | |||
39 | Объём пирамиды и усечённой пирамиды | |||
40 | Объём пирамиды. Решение задач | |||
41 | Объём конуса и усечённого конуса | |||
42 | Решение задач | |||
43 | Решение задач | |||
44 | Обобщающий урок по теме «Объём пирамиды, призмы, конуса, цилиндра» | |||
45 | Контрольная работа №3 «Объёмы тел» | |||
46 | Объём шара и его частей | |||
47 | Решение задач | |||
48 | Площадь сферы | |||
49 | Решение задач | |||
50 | Решение задач | |||
51 | Решение задач | |||
52 | Обобщающий урок «Объём шара, площадь сферы» | |||
53 | Контрольная работа №4 «Объём шара» | |||
Повторение (11 ч.) | ||||
54 | Параллельность | |||
55 | Перпендикулярность | |||
56 | Решение задач | |||
57 | Многогранники | |||
58 | Многогранники | |||
59 | Тела вращения | |||
60 | Тела вращения | |||
61 | Площадь поверхностей | |||
62 | Объёмы тел | |||
63 | Координаты и векторы | |||
64 | Контрольная работа №5 «Итоговая» | |||
Решение задач ЕГЭ (4 ч.) | ||||
65 | Решение задач по курсу геометрии | |||
66 | Решение задач по курсу геометрии | |||
67 | Решение задач по курсу геометрии | |||
68 | Решение задач по курсу геометрии |
СПИСОК ЛИТЕРАТУРЫ:
- Геометрия, 10–11: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2015.
- Зив Б.Г., Мейлер В.М. Дидактические материалы по геометрии для 10 кл. – М.: Просвещение, 2015.
- Научно-теоретический и методический журнал «Математика в школе»
- Еженедельное учебно-методическое приложение к газете «Первое сентября» Математика
- Ковалева Г.И, Мазурова Н.И. геометрия. 10-11 классы: тесты для текущего и обобщающего контроля. – Волгоград: Учитель, 2018.
- Единый государственный экзамен 2020-2021. математика. Учебно-тренировочные материалы для подготовки учащихся / ФИПИ-М.:Интеллект-Цент, 2020.
- Б.Г. Зив. Дидактические материалы по геометрии для 11 класса. – М. Просвещение, 2018.
- Ю.А. Глазков, И.И. Юдина, В.Ф. Бутузов. Рабочая тетрадь по геометрии для 10 класса. – М.: Просвещение, 2020.
- В.Ф. Бутузов, Ю.А. Глазков, И.И. Юдина. Рабочая тетрадь по геометрии для 11 класса. – М.: Просвещение, 2020.
- Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.: Просвещение, 2013.
С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 10 – 11 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2014.