Рабочая программа по курсу математики (геометрии) 11 класс (базовый уровень) 2020 — 2021 учебный год

Составитель: Гурова Елена Николаевна, учитель математики 1 категории

Пояснительная записка

Рабочая  программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 10-11 классов и реализуется на основе следующих документов:

1.      Программа для общеобразовательных школ, гимназий, лицеев:

Сборник “Программы для общеобразовательных школ, гимназий, лицеев: Математика. 5-11 кл.”/ Сост. Г.М.Кузнецова, Н.Г. Миндюк. – 3-е изд., стереотип.- М. Дрофа, 2002; 4-е изд. – 2014г.

2.      Стандарт основного общего образования по математике.

Стандарт среднего (полного) общего образования по математике // Математика в школе.– 2014г,- № 4 ,- с.9

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.

Рабочая программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Цели

Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства. Преобразование геометрических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.

 Образовательные и воспитательные задачи обучения геометрии должны решаться комплексно с учетом возрастных особенностей обучающихся, специфики геометрии как учебного предмета, определяющего её роль и место в общей системе школьного обучения и воспитания. При планировании уроков следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся. Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приемов обучения, сбалансированное сочетание традиционных и новых методов обучения, оптимизированное применение объяснительно-иллюстрированных и эвристических методов, использование технических средств, ИКТ -компонента. Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы, как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов.

   Основные цели курса:

  • овладение системой математических знаний и умений, необходимых в практической деятельности, продолжения образования;
  • приобретение опыта планирования и осуществления алгоритмической деятельности;
  • освоение навыков и умений проведения доказательств, обоснования  выбора решений;
  • \приобретение умений ясного и точного изложения мыслей;
  • развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии;
  • научить пользоваться геометрическим языком для описания предметов.

Задачи обучения:

  • закрепить сведения о векторах и действиях с ними, ввести понятие компланарных векторов в пространстве;
  • сформировать умение учащихся применять векторно-координатный метод к решению задач на вычисление углов между прямыми и плоскостями и расстояний между двумя точками, от точки до плоскости;
  • дать учащимся систематические сведения об основных телах и поверхностях вращения – цилиндре, конусе, сфере, шаре;
  • ввести понятие объема тела и вывести формулы для вычисления объемов основных многогранников и круглых тел.

Контрольные работы направлены на проверку уровня базовой подготовки учащихся, а также на дифференцированную проверку владения формально-оперативным математическим аппаратом, способность к интеграции знаний по основным темам курса. 

Промежуточный контроль знаний осуществляется с помощью проверочных самостоятельных работ, электронного тестирования, практических работ.

 

ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения математики на базовом уровне ученик должен

знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

Геометрия

уметь

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
  • анализировать в простейших случаях взаимное расположение объектов в пространстве;
  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
  • строить простейшие сечения куба, призмы, пирамиды;
  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
  • использовать при решении стереометрических задач планиметрические факты и методы;
  • проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

СОДЕРЖАНИЕ КУРСА:

1. Координаты точки и координаты векторов пространстве. Движения (15 ч).

Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.

Цель: введение понятие прямоугольной системы координат в пространстве; знакомство с координатно-векторным методом  решения задач.

Цели: сформировать у учащихся умения применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве. В ходе изучения темы целесообразно использовать анало­гию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осоз­нанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геомет­рии

О с н о в н а я   ц е л ь – обобщить и систематизировать представления учащихся о декартовых координатах и векторах, познакомить с полярными и сферическими координатами.

Изучение координат и векторов в пространстве, с одной стороны, во многом повторяет изучение соответствующих тем планиметрии, а с другой стороны, дает алгебраический метод решения стереометрических задач.

2.Цилиндр, конус, шар (16 ч)

Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.

Цель: выработка у учащихся систематических сведений об основных видах тел вращения.

Цели: дать учащимся систематические сведения об основных видах тел вращения. Изучение круглых тел (цилиндра, конуса, шара) завершает изучение системы основных пространственных геометриче­ских тел. В ходе знакомства с теоретическим материалом темы зна­чительно развиваются пространственные представления уча­щихся: круглые тела рассматривать на примере конкретных геометрических тел, изучать взаимное расположение круг­лых тел и плоскостей (касательные и секущие плоскости), ознакомить с понятиями описанных и вписанных призм и пирамид. Решать большое количество задач, что позволяет про­должить работу по  формированию логических и графических умений.

О с н о в н а я   ц е л ь – сформировать представления учащихся о круглых телах, изучить случаи их взаимного расположения, научить изображать вписанные и описанные фигуры.

В данной теме обобщаются сведения из планиметрии об окружности и круге, о взаимном расположении прямой и окружности,  о вписанных и описанных окружностях. Здесь учащиеся знакомятся с основными фигурами вращения, выясняют их свойства, учатся их изображать и решать задачи на фигуры вращения. Формированию более глубоких представлений учащихся могут служить задачи на комбинации многогранников и фигур вращения.

3. Объем и площадь поверхности (17 ч).

Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного  конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.

Цель: систематизация  изучения многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Цели: продолжить систематическое изу­чение многогранников и тел вращения в ходе решения задач на вычисление их объемов.

 Понятие объема вводить по анало­гии с понятием площади плоской фигуры и формулировать основные свойства объемов.

Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства,

так как вопрос об объемах принадлежит, по существу, к труд­ным разделам высшей математики. Поэтому нужные результа­ты устанавливать, руководствуясь больше наглядными со­ображениями. Учебный материал главы в основном должен усвоиться в процессе решения задач.

О с н о в н а я   ц е л ь – сформировать представления учащихся о понятиях объема и площади поверхности, вывести формулы объемов и площадей поверхностей основных пространственных фигур, научить решать задачи на нахождение объемов и площадей поверхностей.

Изучение объемов обобщает и систематизирует материал планиметрии о площадях плоских фигур. При выводе формул объемов используется принцип Кавальери. Это позволяет чисто геометрическими методами, без использования интеграла или предельного перехода, найти объемы основных пространственных фигур, включая объем шара и его частей.

Практическая направленность этой темы определяется большим количеством разнообразных задач на вычисление объемов и площадей поверхностей.

Повторение (14+6 ч. (задачи ЕГЭ))

Цель: повторение и систематизация материала 11 класса.

Цели: повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: метод координат в пространстве; многогранники; тела вращения; объёмы многогранников и тел вращения

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

11 класс

2 часа в неделю

Разделы, блоки Количество часов Контроль
Контр.раб. Проверочные
1 Метод координат в пространстве 15 1 2
2 Цилиндр, конус, шар 16 1 2
3 Объемы тел 22 1 2
4 Обобщающее повторение. Решение задач 11 1 2
5 Решение задач ЕГЭ 4 1  
  ИТОГО 68 5 8

Календарно-тематическое планирование уроков геометрии в 11 классе из расчёта 2 часа в неделю, всего 68 часов

№ урока Тема раздела, урока Дата Примечания
По плану Фактич.
    Глава 5. Метод координат в пространстве (15 ч.)        
1 Координаты точки и координаты вектора    
2 Координаты точки и координаты вектора    
3 Простейшие задачи в координатах    
4 Решение задач    
5 Решение задач    
6 Скалярное произведение векторов    
7 Свойства скалярного произведения векторов    
8 Свойства скалярного произведения векторов    
9 Решение задач    
10 Движения    
11 Движения    
12 Решение задач    
13 Решение задач    
14 Обобщающий урок    
15 Контрольная работа №1 «Метод координат в пространстве»    
    Глава 6. Цилиндр, конус и шар (16 ч.)        
16 Цилиндр    
17 Цилиндр    
18 Решение задач    
19 Конус. Усечённый конус    
20 Конус. Усечённый конус    
21 Решение задач    
22 Решение задач    
23 Сфера и шар    
24 Сфера и шар    
25 Площадь сферы    
26 Решение задач    
27 Решение задач    
28 Решение задач    
29 Решение задач. Самостоятельная работа    
30 Обобщающий урок по теме «Цилиндр, конус, шар»    
31 Контрольная работа №2 «Фигуры вращения»    
    Глава 7. Объёмы тел (22 ч.)        
32 Понятие объёма. Объём прямоугольного параллелепипеда    
33 Объём прямой призмы, в основании которой прямоугольный треугольник    
34 Объём призмы и цилиндра    
35 Решение задач    
36 Решение задач на определение объёма призмы и цилиндра    
37 Решение задач. Самостоятельная работа    
38 Объём наклонной призмы    
39 Объём пирамиды и усечённой пирамиды    
40 Объём пирамиды. Решение задач    
41 Объём конуса и усечённого конуса    
42 Решение задач    
43 Решение задач    
44 Обобщающий урок по теме «Объём пирамиды, призмы, конуса, цилиндра»    
45 Контрольная работа №3 «Объёмы тел»    
46 Объём шара и его частей    
47 Решение задач    
48 Площадь сферы    
49 Решение задач    
50 Решение задач    
51 Решение задач    
52 Обобщающий урок «Объём шара, площадь сферы»    
53 Контрольная работа №4 «Объём шара»    
  Повторение (11 ч.)      
54 Параллельность    
55 Перпендикулярность    
56 Решение задач    
57 Многогранники    
58 Многогранники    
59 Тела вращения    
60 Тела вращения    
61 Площадь поверхностей    
62 Объёмы тел    
63 Координаты и векторы    
64  Контрольная работа №5 «Итоговая»    
Решение задач ЕГЭ (4 ч.)    
65 Решение задач по курсу геометрии      
66 Решение задач по курсу геометрии
67 Решение задач по курсу геометрии      
68 Решение задач по курсу геометрии

СПИСОК ЛИТЕРАТУРЫ:

  1. Геометрия, 10–11: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2015.
  1. Зив Б.Г., Мейлер В.М. Дидактические материалы по геометрии для 10 кл. – М.: Просвещение, 2015.
  2. Научно-теоретический и методический журнал «Математика в школе»
  3. Еженедельное учебно-методическое приложение к газете «Первое сентября» Математика
  4. Ковалева Г.И, Мазурова Н.И. геометрия. 10-11 классы: тесты для текущего и обобщающего контроля. – Волгоград: Учитель, 2018.
  5. Единый государственный экзамен 2020-2021. математика. Учебно-тренировочные материалы для подготовки учащихся / ФИПИ-М.:Интеллект-Цент, 2020.
  6. Б.Г. Зив. Дидактические материалы по геометрии для 11 класса. – М. Просвещение, 2018.
  7. Ю.А. Глазков, И.И. Юдина, В.Ф. Бутузов. Рабочая тетрадь по геометрии для 10 класса. – М.: Просвещение, 2020.
  8. В.Ф. Бутузов, Ю.А. Глазков, И.И. Юдина. Рабочая тетрадь по геометрии для 11 класса. – М.: Просвещение, 2020.
  9. Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.: Просвещение, 2013.

С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 10 – 11 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2014.